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Abstract
Quantum shapelets arise as the solution of a d-dimensional harmonic oscillator
or D-dimensional Coulomb problem and may be obtained by requiring scale-
space invariance. These functions have application to image processing in
conventional or quantum contexts. We recall the scale-space-based derivation
of shapelets and present novel properties of these functions, including integral
relations, infinite series and finite convolution sums. Many of these relations
also have application to the combinatorics of zero-dimensional quantum field
theory.

PACS numbers: 03.65.Fd, 02.30.−f

1. Introduction

The concept of scale spaces [2, 25] has proved very useful for image processing applications.
In scale-space theory, one embeds an image into a continuous family of gradually smoother
versions of it. The time t acts as a parameter for this, with the original image corresponding to
t = 0. Increasing the scale should simplify the image without creating spurious structure [18].
For instance, in viewing a facial image at coarser scales, it would be undesirable to have
artificial features appearing. A scale space introduces a hierarchy of image features, and can
provide an important process in going from a pixel-level description to a semantical image
description [29].

Here we report a number of intriguing connections between quantum mechanics, diffusion,
scale-space invariance, and image processing. These are based upon the properties of quantum
shapelets that are the solutions of the simple harmonic oscillator in various dimensions
d. We recall that such solutions are intimately related to the solutions of hydrogenic
atoms (the Coulomb problem) in dimension D [20]. One example is the four-dimensional
harmonic oscillator solution Kustaanheimo–Steifel transformed to the three-dimensional
Kepler–Coulomb problem solution [20].

Our investigation shows that linear scale space will be implementable in either a hybrid
or purely quantum environment. In the next section, we describe this and recall how quantum
shapelets may be derived on the basis of scale-space requirements [18].
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Gaussian derivative kernels are very useful in current image processing for filtering,
convolution and other applications. A particular example is provided by astronomical image
processing, including Hubble space telescope image compression and reconstruction, effects
of gravitational lensing and image de-projection [6, 7, 11, 21, 22, 26]. Therefore our discussion
and analytic techniques may benefit image processing both in current conventional computing
environments and on future quantum processors. Shapelets are particularly useful when
objects of interest within an image are well localized in space.

Quantum shapelets possess a large number of known useful properties, including
invariance under Fourier transform and change of scale, compact representations for
convolution and providing a basis for coherent states. Still, these properties are not exhausted
and we present some analytic methods that complement existing relations and identities.

Besides the quantum Fourier transform, the quantum wavelet transform is known for
cases including the Haar and Daubechies D(4) wavelets [15]. The quantum circuits for these
use tensor products of 2 × 2 matrices together with permutation or swap operators. Wavelets
are generally most useful when a signal or image possesses abrupt changes in signal strength
or pixel intensity. Wavelets are well able to represent discontinuities since they are based
upon the translations and dilations of a given function. As a by-product of our research, we
are able to quickly present the answer to a problem very recently posed in the search for
generalizations of the Mexican hat wavelet [14]. This result is given briefly in the final remark
of the appendix.

In recent years the combinatorics of the general boson normal ordering problem have been
developed [9]. In such theory, there is a strong interplay between bosonic coherent states,
the properties of generalized Bell and Stirling numbers, generating functions and hierarchical
Dobinski-type relations [9]. Much of the generating function-based results that we develop
are then relevant to combinatorial zero-dimensional quantum field theory via boson normal
ordering [10]. In zero-dimensional field theory, all Feynman integrals are unity and the
generating function-like relations provide a means of finding the number of Feynman-like
graphs.

The formulation of the simple harmonic oscillator problem in terms of raising and lowering
operators is well known and need not be recounted. In the context of quantum field theory,
the Hamiltonian is handily written in terms of the number operator a†a where a† is the
creation operator and a is the annihilation operator, satisfying the boson commutation relation
[a, a†] = 1. For a radial problem, for instance, a = d/dr and a† = r provide a formal
representation on a suitable space of functions. The action of (r d/dr)n is then analogous
to the normal ordering problem for writing (a†a)n with all the annihilators on the right. A
coherent state |z〉 = exp(−|z|2/2)

∑∞
n=0(z

n/
√

n!)|n〉, where a†a|n〉 = n|n〉, is then seen to be
in a ready form for exponential generating functions to be applied.

After describing the origin of shapelets from scale-space ideas in the next section, we give
an example of a polar shapelet integral relation useful in current image processing. We then
extend some generating function relations for polar shapelets and present new infinite sums
and finite convolution series. This may also be considered a contribution to special function
theory, as we expand the known properties of the associated Laguerre polynomials. In brief
concluding remarks, we indicate directions for future research.

2. Scale space and shapelets

The work of Lions et al [2] has shown that partial differential equations are the suitable
framework for scale spaces, and the oldest, simplest, and probably most studied version
of scale space corresponds to a linear diffusion process. The fundamental solution
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(Greens function) for a linear heat or diffusion equation is a Gaussian function with standard
deviation proportional to the square root of the time. The solution of the linear diffusion
equation can be given as the convolution of the initial data (image) with this Gaussian function,
and this gives linear scale space.

Derivatives of a Gaussian kernel are Hermite polynomials times this Gaussian kernel
and these result from scale-space considerations in the following way. One may consider
the problem of deriving linear operators from the scale-space representation that are invariant
under scaling transformations [18]. Starting from a certain ansatz, ψn = ϕng, where g is a
Gaussian function, and demanding that ψn satisfy the diffusion equation, it follows that ϕn

must satisfy the Schrödinger equation (SE)

∇2ϕ + [(2n + d) − x2]ϕ = 0, (1)

where d = 1, 2, or 3. This is the time-independent SE of the quantum mechanical simple
harmonic oscillator. When Koenderink and van Doorn proposed such solutions for image
processing use, they termed them ‘ripples’ [18]. Other investigators in astrophysics have later
applied the term ‘shapelets’ [21, 26].

Quantum shapelets will be available if quantum processors are realized. For a purely
quantum processor, this is because any quantum computer is fully capable of simulating any
other. In particular, a quantum computer will be readily capable of solving the harmonic
oscillator problem and generating its eigenstates. Indeed, for an example of a quantum
computer based upon this particular problem, one may consult the well-known book of
Nielsen and Chuang [23] for such a model. In a hybrid quantum-classical context, shapelets
will be available since there is an efficient quantum lattice gas algorithm for the Schrödinger
equation, even in the multiparticle case [31]. In this algorithm, applications of a unitary
collision operator alternate with streaming operations.

The explicit representation of quantum shapelets is in terms of products of Gaussian
functions and Hermite (Hn) or Laguerre polynomials, depending upon the spatial dimension
and the coordinate system used. Omitting normalization factors, Cartesian shapelet basis
functions for two-dimensional image applications are given by

φn1n2(x, y) ∝ Hn1

(
x

β

)
Hn2

(
y

β

)
exp[−(x2 + y2)/2β2], (2a)

and polar shapelet basis functions are given by

χnm(r, θ) ∝ r |m|L|m|
(n−|m|)/2

(
r2

β2

)
exp[−r2/2β2] exp(imθ), (2b)

where Lα
n is an associated Laguerre polynomial. For the quantum mechanical isotropic

harmonic oscillator problem, β2 = h̄/
√

km, where m is the particle mass and k is the spring
constant, while for shapelet image processing, β becomes a width parameter. The quantum
numbers ni correspond to the energy levels for Cartesian shapelets as En1n2 = (n1 +n2 + 1)h̄ω,
where ω = √

k/m and n1, n2 = 0, 1, 2, . . . . For polar shapelets, m corresponds to the angular
momentum and the energies are given by Enm = (2n + |m| + 1)h̄ω with n = 0, 1, 2, . . . and
m = 0,±1,±2, . . . . The important rotationally invariant basis states have m = 0.

The Hermite and Laguerre polynomials are closely related to one another, and to the
confluent hypergeometric function 1F1. We recall that(

n + α

n

)
1F1(−n, α + 1, x) = Lα

n(x) = (−x)n

n!
2F0

(
−n,−n − α; .;− 1

x

)
, (3)

where the latter form follows by reordering of the series for the hypergeometric function. From

Kummer’s first transformation [3] we have 1F1(j, α + 1, x) = (
n−1

n−α−1

)−1
exLα

j−α−1(−x).
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3. An object shape measure

From a shapelet decomposition, the shapelet coefficients may be used to classify object
morphologies within an image. In the context of image processing for classifying galaxies,
measures of concentration, asymmetry and clumpiness have been shown to correlate with
evolutionary type, galaxy merger history and star formation rates, respectively [22]. In this
section, we illustrate the shapelet calculus with the concentration index, and relegate to the
appendix an integral evaluation useful for the convolution of Cartesian shapelets. We then
generalize our integration result to one useful in the study of convolution equation systems on
the Heisenberg group Hn [5].

A concentration index has been defined for astronomical images based upon certain
percentages of an object’s total flux. For images of galaxies, the concentration correlates well
with their Hubble type and mass [8, 22]. In calculating the concentration, it is necessary
to integrate an object’s radial profile, and in so doing Massey and Refregier introduced the
integral ([22], equation (47))

In ≡ 1

2β2

∫ R

0
Ln/2

(
r2

β2

)
exp(−r2/2β2)r dr, (4)

where β is the scale parameter. We determine In alternatively to [22]. In fact, our independent
derivation aided in presenting the result there [22]. We have

Proposition 1. For y ≡ R2/β2 and n a nonnegative even integer, we have

In(y) = (−1)n/2

2
− 1

2
e−y/2Ln/2(y) − (−1)n/2 e−y/2

n/2−1∑
j=0

(−1)jLj (y). (5)

Proof of equation (5). By a change of variable and the use of a known summation identity
for Lk(τx) [4, 13] we have

In(y) = 1

2

∫ y/2

0
Ln/2(2w) e−w dw

= 1

2

n/2∑
j=0

(
n/2

j

)
2j (−1)n/2−j

∫ y/2

0
Lj(w) e−w dw, (6)

which exhibits that In depends only upon the ratio y. By using a tabulated integral [16] we
find that ∫ y

0
Lj(w) e−w dw =

(∫ ∞

0
−

∫ ∞

y

)
Lj(w) e−w dw

= δj0 − e−y[Lj(y) − Lj−1(y)], (7)

where δjk is the Kronecker symbol and orthogonality of the Laguerre polynomials was used.
By applying equation (7) to equation (6), and again using the identity for Lj(2x), we have

In(y) = (−1)n/2

2
− 1

2
e−y/2Ln/2(y) +

(−1)n/2

2
e−y/2

n/2∑
j=1

(
n/2

j

)
2j (−1)jLj−1(y/2). (8)

We next substitute the expression [13, 4] Lj(y/2) = 2−j
∑j

�=0

(
j

�

)
L�(y) into this equation.

We reorder the resulting double sum and apply the orthogonality of the binomial coefficients,
thus yielding equation (5). An equivalent of this result is obtained in [22] by iterated integration
by parts.
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The evaluation of equation (5) for different values of y enables the determination of
the concentration index from equations (46) and (59) of [22]. Accordingly, we suggest that
equation (5) may be convenient for some applications.

The following function arises in the investigation of the injectivity of the Pompeiu
transform in the Heisenberg group [5] (p 219):

�n−1
m (x) ≡

∫ x

0
e−t/2tn−1Ln−1

m (t) dt, x � 0. (9)

The technique used for proposition 1 may be extended to1

Proposition 2. For x � 0 and m a positive integer, we have

�n−1
m (x) = 2n(−1)m

(m + n − 1)!

m!

[
1 − e−x/2

n−1∑
�=0

1

�!

(x

2

)�

− 2 e−x/2
(x

2

)n
m−1∑
�=0

(−1)��!

(� + n)!
Ln

�(x)

]
. (10)

Proof of equation (10). With a simple change of variable and re-expression of Ln−1
m (2w)

[13, 4] we have

�n−1
m (x) = 2n(−1)m

m∑
p=0

(
m + n − 1

m − p

)
2p(−1)p

∫ x/2

0
Ln−1

p (w) e−wwn−1 dw, (11)

where ∫ y

0
Ln−1

p (w) e−wwn−1 dw =
(∫ ∞

0
−

∫ ∞

y

)
Ln−1

p (w) e−wwn−1 dw

= (n − 1)!δp0 +
1

p
e−yynLn

p−1(y), p � 1. (12)

In equation (12), orthogonality of the associated Laguerre polynomials has been used,
together with their Rodrigues-type formula [16, 3] in order to evaluate the remaining integral.
For the p = 0 case, we have for n = 1, 2, . . .∫ ∞

y

e−wwn−1 dw = (n, y) = (n − 1)! e−y

n−1∑
m=0

ym

m!
, (13)

where (x, y) is the incomplete Gamma function [16, 3]. We next apply equations (12)
and (13) to equation (11) and substitute Ln

p−1(x/2) = 21−p
∑p

�=1

(
p+n−1
p−�

)
Ln

�−1(x). Then
reordering the resulting double sum and summing the binomial coefficients yields
equation (10).

Remark. The last term on the right side of equation (10) contains e−x/2 multiplying a
polynomial of degree n + m − 1. This equation gives the expected reduction as x → ∞ (see
footnote 1). By a change of variable, we have

�n−1
m (x) = 2

β2n

∫ βx1/2

0
r2n−1Ln−1

m

(
r2

β2

)
e−r2/2β2

dr, (14)

being an n �= 1 extension of equation (4).

1 A number of typographical errors may be noted in section 6.6 of [5]. Near the middle of pp 219 and 220, (n + m)!
should be replaced by (n + m − 1)!. Near the middle of p 220, L

(n−1)
m should replace L

(n−1)
ν and L

(n−1)
m (t) should

replace L
(n−1)
m (t2) near the bottom in the second expression for T ∗(τ, m). On this same page, [11] should replace

[12].
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4. New infinite sums and finite convolution series of Laguerre polynomials

The associated Laguerre polynomials form a positive-definite orthogonal polynomial
sequence. The Sheffer-type exponential generating function of these polynomials [12] is
a key feature of part of the theory of bosonic normal ordering and the quantum field theory of
partitions [10].

A finite convolution sum such as [17, 28] L
α+β+1
n (x + y) = ∑n

k=0 Lα
n−k(x)L

β

k (y) is
well known and is relevant to the corresponding combinatorial field theory. In this section, we
develop new infinite sums and finite convolution series of the associated Laguerre polynomials.
The main result is the following

Proposition 3. For α > −1 and k a positive integer, we have

n−1∑
j=1

Lα
j−1(x)Lk+1

n−j−1(y)

n − j
= k!

yk+1

[
k∑

�1=0

y�1

�1!
Lα

n−1(x) −
k∑

�2=0

y�
2

�2!
L

α+�2
n−1 (x + y)

]
. (15)

The proof of proposition 3 relies on two lemmas.

Lemma 1. For α > −1 and |w| < 1 we have
∞∑

n=1

Lα
n−1(x)

n
wn = ex

xα

[
(α, x) − 

(
α,

x

1 − w

)]
. (16)

Lemma 2. For j a nonnegative integer and |w| < 1 we have

∞∑
n=1

L
j+1
n−1(x)

n
wn = j !

xj+1

[
j∑

m=0

xm

m!
− exw/(w−1)

j∑
m=0

1

m!

xm

(1 − w)m

]
. (17)

Lemma 2 follows from lemma 1 due to the property [16] (n + 1, x) =
n! e−x

∑n
m=0 xm/m! when n is a nonnegative integer.

Proof of lemma 1. We integrate a standard generating function for the associated Laguerre
polynomials [3, 16],

∑∞
n=1 Lα

n(x)zn = (1−z)−α−1 exp[xz/(z−1)] for |z| < 1. With multiple
changes of variable we have [16]

∞∑
n=1

Lα
n−1(x)

n
wn = −

∫ w/(w−1)

0
(1 − v)α−1 exv dv = ex

∫ 1/(1−w)

1
uα−1 e−xu du (18a)

= ex

xα

∫ x/(1−w)

x

ζ α−1 e−ζ dζ = ex

xα

[
(α, x) − 

(
α,

x

1 − w

)]
. (18b)

Alternatively we may apply an integral representation for Lα
n in terms of the Bessel function

Jα given as equation (6.2.15) on p 286 of [3]. Interchanging summation and integration then
gives [16]

∞∑
n=1

Lα
n−1(x)

n
wn = exx−α/2

∫ ∞

0
tα/2−1[e−(1−w)t − e−t ]Jα[2(tx)1/2] dt

= exx−α

[
γ

(
α,

x

1 − w

)
− γ (α, x)

]
, (18c)

where γ (α, x) = (α) − (α, x). �
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(Proof of proposition 3). We consider the product of series
∞∑

n=0

Lα
n(x)tn

∞∑
m=1

L
β

m−1(y)

m
tm−1 = ext/(t−1)

(1 − t)α+1

ey

tyβ

[
(β, y) − 

(
β,

y

1 − t

)]
, (19)

where lemma 1 has been used. The sum on the left side may be transformed to
∞∑

n=0

∞∑
j=n

Lα
n(x)

j − n + 1
L

β

j−n(y)tj =
∞∑

j=0

j+1∑
n=1

Lα
n−1(x)

j − n + 2
L

β

j−n+1(y)tj . (20)

By making use of the generating function of the associated Laguerre polynomials and applying
lemma 2 to the right side of equation (19) we find
∞∑

n=0

Lα
n(x)tn

∞∑
m=1

L
β

m−1(y)

m
tm−1 = k!

yk+1

[ ∞∑
n=0

Lα
n+1(x)tn

k∑
�1=0

y�1

�1!
−

k∑
�2=0

y�2

�2!

∞∑
n=0

L
α+�2
n+1 (x + y)tn

]
.

(21)

We then compare the coefficients of t j on both sides of this equation. Putting j → j − 2 and
reversing the roles of the indices j and n gives the statement of equation (15). �

Lemmas 1 and 2 and proposition 3 have very many special cases, and we mention some
of these for illustration. Obviously from equation (18a), α = 1 is a very special case,
(1, x) = e−x , and we have

∞∑
n=1

L1
n−1(x)

n
wn = 1

x
[1 − exw/(w−1)], |w| < 1, (22)

and
n−1∑
j=1

L1
j−1(x)L1

n−j−1(y)

n − j
= 1

y

[
L1

n−1(x) − L1
n−1(x + y)

]
. (23)

When α = 1/2 and α = 0 the result of lemma 1 may be written in terms of the probability
integral � and the exponential integral Ei [16], respectively:

∞∑
n=1

L
1/2
n−1(x)

n
wn =

√
π

x

[
�

(√
x

1 − w

)
− �(

√
x)

]
, (24a)

∞∑
n=1

Ln−1(x)

n
wn = ex

[
Ei

(
x

w − 1

)
− Ei(−x)

]
. (24b)

Further taking the limit w → 1 in lemma 1 or equation (24) yields very special cases
often listed in the standard tables of Hansen, chapter 48 [17]. For instance, we have∑∞

n=1 Ln−1(x)/n = −exEi(−x). Therefore, our results subsume many of the known Laguerre
expansions in the literature.

Similar to how we obtained lemma 1, we may continue to integrate that relation. Omitting
the details, we have found

Lemma 3. For α > −1 and |z| < 1 we have
∞∑

n=2

Lα
n−2(x)

n(n − 1)
zn = ex

xα

{
(z − 1)(α, x) + x

[
(α − 1, x) − 

(
α − 1,

x

1 − z

)]

+ (1 − z)

(
α,

x

1 − z

)}
, (25)
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and

Lemma 4. For α > −1 and |w| < 1 we have
∞∑

n=3

Lα
n−3(x)

n(n − 1)(n − 2)
wn = ex

xα

{(
1

2
w − 1

)
w(α, x) + x(w − 1)(α − 1, x)

+ (w − 1)

(
α − 1,

x

1 − w

)
+

x2

2

[
(α − 2, x) − 

(
α − 2,

x

1 − w

)]

+
1

2
(α, x) − 1

2
(w − 1)2

(
α,

x

1 − w

)}
. (26)

These and related expressions have potential applications in summing perturbation series
in quantum mechanics [27]. Again lemmas 3 and 4 have a great many special cases. As an
illustration of special cases of lemma 3 we have

∞∑
n=2

Lα
n−2(x)

n(n − 1)
= exx1−α(α − 1, x), (27a)

∞∑
n=2

(−1)n
Lα

n−2(x)

n(n − 1)
= ex

xα
{−2(α, x) + x[(α − 1, x) − (α − 1, x/2)] − 2(α, x/2)},

(27b)

and ∞∑
n=2

(−1)n
L2

n−2(x)

n(n − 1)
= 1

x2
[−2 − x(1 + ex/2) − 2 ex/2(1 + x/2)]. (27c)

5. Summary and brief discussion

We have described the scale-space and quantum mechanical origin of shapelets. These
complete and orthonormal basis functions are well suited to image processing tasks. Their
abundant analytic properties permit compact expressions for convolution, other integrations,
and linear transformations to be developed. Shapelets and related functions are very useful
for the analytic formulation of multicentre integrals in variational calculations of molecular
electronic wavefunctions [24]. Further research for using shapelets in a quantum computing
environment is required. We have been able to develop new infinite sums and finite convolution
series of associated Laguerre polynomials that generalize several known results.

Much of the theory we developed with generating functions for polar shapelets can be
carried over directly for Cartesian shapelets. In addition, each set of Hermite and associated
Laguerre polynomials has other existing generating functions. This permits generalization of
many of our results and will be described elsewhere. The generating function phenomenology
extends to applications in several areas of mathematical physics and image processing,
including the combinatorics of bosonic quantum field theory in zero dimension.

The functions [19]

�α
n,µ(x, t) ≡ Lα

n(|µ|x)

Lα
n(0)

e−|µ|x/2+iµt , x � 0, (28)

where µ and t are real, have yet more properties than the associated Laguerre polynomials
themselves. The functions � have a positive convolution structure and a group theoretic
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interpretation as spherical functions [19]. On a certain space R2n+1 the convolution is
commutative. Furthermore, there is the linearization formula

�α
m,µ(x, 0)�α

n,ν(x, 0) =
m+n∑
i=0

ci�
α
m+n−i,µ+ν(x, 0), (29)

where ci � 0 if µ, ν � 0 [4, 19]. Therefore, the functions �α
n,µ may be quite suitable for

image processing applications.
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Appendix. A triple product integral for Cartesian shapelet convolution

Motivated by applications of convolution, deconvolution and image deprojection with
Cartesian shapelets, we develop here a closed form for an infinite integral for a triple product
of Hermite polynomials Hm [26]. We let

L�mn(a, b, c) ≡ 1√
π

∫ ∞

−∞
H�(ax)Hm(bx)Hn(cx) e−x2

dx. (A.1)

Based upon a consideration of parity, this integral vanishes unless � + m + n is an even integer.
We may note that the case a = b = c = 1 is known in closed form [3, 16], as well as
effectively the case a = b = c = 1/

√
2.

We have
Proposition A. For �,m and n nonnegative even integers,

L�mn(a, b, c) = �!m!n!
min(�,m)∑

q1=0
even

min(�,n)∑
q2=0
even

min(m,n)∑
q3=0
even

× (a2 − 1)(�−q1−q2)/2(b2 − 1)(m−q1−q3)/2(c2 − 1)(n−q2−q3)/2

[(m − q1 − q3)/2]![(n − q2 − q3)/2]![(n − q2 − q3)/2]!

2q1+q2+q3

q1!q2!q3!

× aq1+q2bq1+q3cq2+q3 . (A.2)

Proof of equation (A.2). We proceed as in [3] (p 318) for the case of a = b = c = 1, using
the exponential generating function of the Hermite polynomials. We have∫ ∞

−∞

∞∑
�,m,n=0

1

�!

1

m!

1

n!
H�(ax)Hm(bx)Hn(cx) e−x2

r�smtn dx

=
∫ ∞

−∞
exp(2axr − r2) exp(2bxs − s2) exp(2cxt − t2) e−x2

dx

= exp(2(rs + rt + st))

∫ ∞

−∞
exp(−(x − r − s − t)2)

× exp(2x[(a − 1)r + (b − 1)s + (c − 1)t]) dx

= √
π exp((a2 − 1)r2 + (b2 − 1)s2 + (c2 − 1)t2 + 2ar(bs + ct) + 2bcst). (A.3)
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We now expand the right side in powers of r, s and t,∫ ∞

−∞

∞∑
�,m,n=0

1

�!

1

m!

1

n!
H�(ax)Hm(bx)Hn(cx) e−x2

r�smtn dx

= √
π

∞∑
k1,k2,k3=0

∞∑
q1,q2,q3=0

(a2 − 1)k1(b2 − 1)k2(c2 − 1)k3

k1!k2!k3!

2q1+q2+q3

q1!q2!q3!

× aq1+q2bq1+q3cq2+q3r2k1+q1+q2s2k2+q1+q3 t2k3+q2+q3

= √
π

∞∑
q1,q2,q3=0

∞∑
�=q1+q2

∞∑
m=q1+q3

∞∑
n=q2+q3

× (a2 − 1)(�−q1−q2)/2(b2 − 1)(m−q1−q3)/2(c2 − 1)(n−q2−q3)/2

[(m − q1 − q3)/2]![(n − q2 − q3)/2]![(n − q2 − q3)/2]!

2q1+q2+q3

q1!q2!q3!

× aq1+q2bq1+q3cq2+q3r�smtn, (A.4)

where we changed the variables of summation. Upon reordering the sums on the right side of
this equation and equating the coefficients of like powers of r, s and t there with those on the
left side, we obtain the proposition.

Remarks. (i) The proof when one of the indices �,m, or n is even and the other two are
odd is very similar and is omitted. (ii) Presumably proposition A may also be obtained by
the use of linearization formulae for the product of two Hermite polynomials. For the case of
L�,m,n(a, b, b) this is obvious [3] (p 318). (iii) In the article ‘Shapelets-II’ of [26], recurrence
relations were given for L�,m,n(a, b, c), based upon integration by parts. In the short table 1
given there, in fact only one entry is genuinely a triple product integral, since all others
contain at least one index �,m, or n that is zero. (iv) Wavelets ψ satisfy the admissibility
condition

∫ ∞
−∞ ψ(x) dx = 0 and it was very recently asked to find such even functions with

weight factor exp(−x2/2) generalizing the function ψM(x) = π−1/4 exp(−x2/2)(1 − x2)

[14]. Based upon the orthogonality properties of products of Hermite polynomials, our
answer is immediate. We may take ψ , a ‘mother wavelet’, as any of the functions, omitting a
constant multiplier, Hn(x/

√
2) exp(−x2/2) or Hn(x/

√
2)Hm(x/

√
2) exp(−x2/2), where the

subscripts are even integers, and n > 0, n �= m, respectively. More generally, we may take any
linear combination of these functions as an admissible function. We recognize the Mexican
hat wavelet as ψM(x) ∝ exp(−x2/2)H2(x/

√
2). The elaborate use of Dirac formalism [14]

has not been required to generalize it. In essence, we have recovered in very short order all of
the observations of example 1 of [30].
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